Exercise 65

Is there a number a such that

$$
\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}
$$

exists? If so, find the value of a and the value of the limit.

Solution

Factor the denominator.

$$
\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}=\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+(a+3)}{(x+2)(x-1)}
$$

Plugging in $x=-2$ makes the denominator zero, so the goal is to write the numerator as $(x+2) f(x)$ so that the $(x+2)$ factor in the denominator cancels out.

$$
\begin{aligned}
\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2} & =\lim _{x \rightarrow-2} \frac{(x+2) f(x)}{(x+2)(x-1)} \\
& =\lim _{x \rightarrow-2} \frac{f(x)}{x-1} \\
& =\frac{\lim _{x \rightarrow-2} f(x)}{\lim _{x \rightarrow-2}(x-1)} \\
& =\frac{\lim _{x \rightarrow-2} f(x)}{-2-1} \\
& =-\frac{1}{3} \lim _{x \rightarrow-2} f(x)
\end{aligned}
$$

Figure out what $f(x)$ is by using long division.

$$
\begin{gathered}
(x+2) f(x)=3 x^{2}+a x+(a+3) \\
f(x)=\frac{3 x^{2}+a x+(a+3)}{x+2} \\
x + 2 \longdiv { 3 x ^ { 2 } + a x + (a + 3) }
\end{gathered}
$$

Multiplying x by $3 x$ gives the $3 x^{2}$ term.

$$
x + 2 \longdiv { 3 x } \begin{array} { l }
{ 3 x ^ { 2 } + a x + (a + 3) }
\end{array}
$$

Multiply the divisor by $3 x$ and subtract the result from the dividend.

$$
\begin{gathered}
x+2 \begin{array}{l}
3 x \\
-\left(3 x^{2}+a x+(a+3)\right.
\end{array}
\end{gathered}
$$

Do the subtraction.

$$
\begin{gathered}
x+2 \frac{3 x}{\frac{3 x^{2}+a x+(a+3)}{(a-6) x}}
\end{gathered}
$$

Bring down the next term from the dividend.

$$
\begin{array}{r}
x+2 \frac{3 x}{\frac{-\left(3 x^{2}+6 x\right)}{(a-6) x+(a+3)}}
\end{array}
$$

Multiplying x by $(a-6)$ gives the $(a-6) x$ term.

$$
\begin{array}{r}
x+2 \begin{array}{r}
3 x+(a-6) \\
\frac{-\left(3 x^{2}+a x+(a+3)\right.}{(a-6) x+(a+3)}
\end{array} \\
\frac{(a x)}{2}
\end{array}
$$

Multiply the divisor by ($a-6$) and subtract the result from the modified dividend.

$$
\begin{aligned}
& x + 2 \longdiv { 3 x + (a - 6) } \begin{array} { r }
{ 3 x ^ { 2 } + a x + (a + 3) }
\end{array} \\
& -\left(3 x^{2}+6 x\right) \\
& (a-6) x+(a+3) \\
& -((a-6) x+2(a-6))
\end{aligned}
$$

Do the subtraction.

$$
\begin{array}{r}
x+2 \begin{array}{r}
3 x+(a-6) \\
\frac{-\left(3 x^{2}+a x+(a+3)\right.}{(a-6) x+(a+3)} \\
\frac{-((a-6) x+2(a-6))}{-a+15}
\end{array}
\end{array}
$$

There are no other terms to bring down, so $-a+15$ is the remainder.

$$
f(x)=\frac{3 x^{2}+a x+(a+3)}{x+2}=3 x+(a-6)+\frac{-a+15}{x+2}
$$

Since we want $f(x)$ to be defined at $x=-2$, set $a=15$ to eliminate the remainder.

$$
f(x)=3 x+9
$$

Therefore,

$$
\begin{aligned}
\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}=-\frac{1}{3} \lim _{x \rightarrow-2} f(x)=-\frac{1}{3} \lim _{x \rightarrow-2}(3 x+9) & =-\frac{1}{3}(3) \\
& =-1
\end{aligned}
$$

